Elliptic Gauss Sums and Hecke L - values at s = 1 Dedicated to Professor Tomio

نویسندگان

  • Tomio Kubota
  • Tetsuya Asai
چکیده

where p (> 3) is a rational prime such that p ≡ 3 (mod 4) and p ≡ 1 (mod 4), respectively ; ( p ) is the Legendre symbol and h(−p) is the class number of the quadratic field Q( √−p). The formulas are apparently related to the Dirichlet L-values at s = 1. To get a typical elliptic Gauss sum, we have only to replace the Legendre symbol by the cubic or the quartic residue character, and the trigonometric function by a suitable elliptic function. The notion of elliptic Gauss sum was first introduced by G.Eisenstein for a concern of higher reciprocity laws, but since then it has been regarded seemingly as a minor object of study. (cf. [L], p.311) We shall here try to reconsider it. Especially, we treat the problem of rationality of the coefficient, so we call, of the elliptic Gauss sum, which is an analogy of the coefficient h(−p) in the above classical case. A typical example is as follows. Let sl(u) be the lemniscatic sine of Gauss so that sl((1− i)̟u) is an elliptic function

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hecke Characters and the K–theory of Totally Real and Cm Number Fields

Let F/K be an abelian extension of number fields with F either CM or totally real and K totally real. If F is CM and the BrumerStark conjecture holds for F/K, we construct a family of G(F/K)–equivariant Hecke characters for F with infinite type equal to a special value of certain G(F/K)–equivariant L–functions. Using results of Greither–Popescu [19] on the Brumer–Stark conjecture we construct l...

متن کامل

One-dimensional Double Hecke Algebra and Gaussian Sums

We introduce and describe one-dimensional cyclotomic Gauss-Selberg sums generalizing the classical Gaussian sums. They correspond to irreducible self-dual unitary spherical representations of the one-dimensional double affine Hecke algebra. Introduction This paper is about applications of the one-dimensional double affine Hecke algebra to q-Gauss integrals and Gaussian sums. The double affine H...

متن کامل

A hybrid mean value involving a new Gauss sums and Dedekind sums

‎In this paper‎, ‎we introduce a new sum‎ ‎analogous to Gauss sum‎, ‎then we use the properties of the‎ ‎classical Gauss sums and analytic method to study the hybrid mean‎ ‎value problem involving this new sums and Dedekind sums‎, ‎and‎ ‎give an interesting identity for it.

متن کامل

Even Powers of Divisors and Elliptic Zeta Values

We introduce and study elliptic zeta values, a two-parameter deformation of the values of Riemann’s zeta function at positive integers. They are essentially Taylor coefficients of the logarithm of the elliptic gamma function, and share the SL(3,Z) modular properties of this function. Elliptic zeta values at even integers are related to Eisenstein series and thus to sums of odd powers of divisor...

متن کامل

Se p 20 09 Motives for elliptic modular groups

In order to study the arithmetic structure of elliptic modular groups which are the fundamental groups of compactified modular curves with cuspidal base points, these truncated Malcev Lie algebras and their direct sums are considered as elliptic modular motives. Our main result is a new theory of Hecke operators on these motives which gives a congruence relation to the Galois action, and a moti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008